Patterns of Application
Development Using Al

Introduction to a Practical Approach for Integrating
LLM-based Al Into Day to Day Programming

Obie Fernandez
Al in Production - Asheville, NC - July 19, 2024

Introduction

Generative Al and LLMs in particular are
revolutionizing how | write software. |
wrote a book about it.

Key Question: How to apply this approach
without changing everything?

In this talk | will discuss one abstract
pattern and at least a couple of concrete
patterns depending on time constraints.

Leanpub

Patterns of

St Application

Development
Using Al

Obie Fernandez

(42 . FEATURED ON
% 7Vi,0|ymp|a Product Professionals Pricing Blog Olympia vs. ChatGPT @ Product Hunt 13 Sign up

N3
Dl

Grow Your Business
Not Your Payroll

Hire our smart and affordable Al-powered consultants

Whether you need help with business strategy, marketing, content generation, legal advice, software
development, or sales, our smart Al-powered assistants are ready to help you succeed.
No prompt engineering required! Read our case studies and watch tutorials.

https://olympia.chat

The Abstract Patterns

Narrow The Path
Focusing the Al on the task at hand so it’s not
distracted by its vast latent space

Retrieval Augmented Generation (RAG)
Retrieve relevant information then combine with
prompt to provide richer context

Multitude of Workers
Decompose workflows into collaborating
almost-human discrete components

Tool Use
Functions that an LLM can interact with during the
generation process

Self Healing Data
Automatically detect, diagnose, and correct data
anomalies, inconsistencies, or errors

Contextual Content Generation
Generate dynamic and context-specific content
within your applications

Generative Ul
Create highly personalized and dynamic user
experiences on-the-fly

Intelligent Workflow Orchestration
Dynamically orchestrate and
optimize complex workflows

The Concrete Patterns (28)

Prompt Engineering Discrete Components

Chain Of Thought
Role Assignment
Prompt Object
Prompt Template
Structured 10
Prompt Chaining
Prompt Rewriter
Response Fencing
Query Analyzer
Query Rewriter
Ventriloquist

Predicate

API Facade

Result Interpreter
Virtual Machine

Human In The Loop

Escalation

Feedback Loop

Passive Information Radiation
Collaborative Decision Making
Continuous Learning

Intelligent Error Handling
Contextual Error Diagnosis
Intelligent Error Reporting
Predictive Error Prevention

Smart Error Recovery

Personalized Error Communication
Adaptive Error Handling Workflow

Quality Control
Eval
Guardrail

Multitude of Workers

Decompose workflows into collaborating almost-human

discrete components

| like to think of my Al components as little,

almost-human virtual “workers” that can be
seamlessly integrated into my application logic to
perform specific tasks or make complex decisions.

Discrete Al Components

Distinct Al-powered building
blocks that streamline the
process of incorporating
intelligent behaviors into your
software

Al can help you declare parts of
your biz logic in plain language.

Stepping stone to writing entire
applications in prompt-driven
style

Modularity is Key
Proponents of OO programming tell us to think
about object interactions as messages.

Al workers “talk to each other” via plain language
messages, like little humans interacting

Loosely-coupled approach that allows your
application to adapt and evolve over time

Influenced by Microservices approach

Different than typical agents approach, these
workers do stuff on behalf of your application,
not the user

User 7482
hasn’t
logged in
recently

Let me
look at
their
activity
history

Okay, I'll send
them an email
about our latest
new feature

Inspired by Behavior Driven Development (BDD)

BDD emphasizes collaboration among developers and non-technical
stakeholders to understand a system’s expected behavior through clear examples
written in an easily understandable language

Literally invented by many of my Rubyist colleagues at Thoughtworks including:

e Dan North
o Liz KEOgh Given I am on the home page

When I click on the "Login" button
® ASIak He"esoy (Cucumber) Then I should see the login form
® Dave Astels

Example: Account Manager

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by 1invoking one
or more of the functions provided. Escalate to human support rep if you
encounter any problems.

Do not allow the user to change their account or add a new AI assistant
unless their account subscription status is active.

Make sure to notify the account owner of the result of the change request
whether or not it is successful.

Always end by calling the 'finished' function so that we save the state
of the change request as completed.

app > models > account > @ account_manager.rb > 43 Account::AccountManager
You, 3 weeks ago | 1 author (You)
1 # frozen_string_literal: true

2
You, 3 weeks ago | 1 author (You)
3 class Account::AccountManager
4 include CableReady::Broadcaster
5 include ChatCompletion
6 include FunctionDispatch
7
8 attr_reader :account, :account_change
9
10 alias usage_subject account
11
12 SYSTEM_DIRECTIVE = <<~END
13 You are an intelligent account manager for Olympia. The user will request changes to their account,
14 and you will process those changes by invoking one or more of the functions provided.
15
16 Make sure to notify the account owner of the result of the change request.
17
18 Do not allow the user to add a new bot_config unless their account is active.
19
20 Always end by calling the 'finished' function so that we save the state of the change request as completed.
21 END
22
23 function :add_bot_config_to_account, "Adds an assistant bot to user's account", bot_config_id: { type: "string" } do |arguments|
24 BotConfig.find(arguments[:bot_config_id]).then do |bot_config|
25 bot_config.clone_to(account)
26 output = ["Bot config with name #{bot_config.name} added to user's account. Make sure to use the bot's name when communicating with the user."]
27 if bot_config.klone&.unit_amount.to_i.positive?
28 subject = "New client for #{bot_config.name}"
29 message = "#{account.name} signed up for #{bot_config.name} today."
30 bot_config.klone.account.owner.freeform_notify(subject:, message:)
31 output << "Make sure to add a line item to the user's subscription."
32 output << "The price_id is #{bot_config.klone.stripe_price_id}"
33 output << "The monthly charge in cents is #{bot_config.klone.unit_amount}"
34 end
35 continue_with(output.join(" "))
36 end
37 cable_ready[account].redirect_to(url: "/conversations").broadcast

38 reccue StandardFrror => e

Business Logic Revisions

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking one
or more of the functions provided. Escalate to human support rep if you
encounter any problems.

Do not allow the user to change their account or add a new AI assistant
unless their account subscription status is active.

Make sure to notify the account owner of the result of the change request
whether or not it is successful.

Always end by calling the 'finished' function so that we save the state
of the change request as completed.

Prompt Engineering

Patterns for optimizing prompts, improving Al
performance, and achieving desired outcomes

Structured 10 Pattern

Structured Input

Helps the LLM better understand the
task at hand and the specific data it
needs to process

® Provide input data to the LLM in a
structured standard format such as
XML or JSON.

® C(Clearly delineate different parts of
the prompt, such as instructions,
examples, and data

Structured Output

Simplifies the parsing and integration
of responses into your application’s
workflow.

® Use specific tags or delimiters to
mark different parts of the output,
such as entity names, values, or
categories

® Enables easy extraction of relevant
information from the response

Obie Fernandez &
@obie

My wild ass prediction for the day: XML will stage a comeback because
it's easier to integrate with LLMs

#ai #xml|

9:49 AM - Mar 27, 2024 - 1,874 Views

O 00 N OO U1 A W IN =

S~ W N =

Here’s an example of how you can use XML tags to structure input when asking

an LLM to extract attributes from a product description:

<description>

The SmartHome Mini is a compact smart home assistant available in black or
white for only $49.99. At just 5 inches wide, it lets you control lights,
thermostats, and other connected devices via voice or app—no matter where you
place it in your home. This affordable little hub brings convenient
hands-free control to your smart devices.

</description>

Extract <name>, <size>, <price>, and <color> from this product <description>.

By using XML tags to structure the input and output, the LLM implicitly

understands that it should generate a response in XML:

<name>SmartHome Mini</name>
<size>5 inches wide</size>
<price>$49.99</price>
<color>black or white</color>

Ventriloquist Pattern

Allows you to guide the Al’s responses by preloading hardcoded user-assistant

exchanges into the conversation transcript before starting any completions.

1.

Plan the desired outcome for the Al’s responses

Create a set of hardcoded user-assistant exchanges that guide the Al
towards the intended direction

Preload these exchanges into the conversation transcript before starting any
completions

Initiate the chat completion process

Response continues where the hardcoded exchanges left off

O 00 N O U A WIN =

N N NN N N NNNRFRR R R R B B 2B B 9
00 N O U A WIN M O OO NO VA WN RO

class AlternateKeywords
include Raix::ChatCompletion

PROMPT = <<~END
Matching the original language of the question generate 3 alternate
keywords that might produce better results. Reply with just the list,
one per line.

END

def call(question)
transcript << { system: "You are a powerful web search engine" }
transcript << { user: question }
transcript << { assistant: "Searching... no results found." }
transcript << { user: PROMPT }
chat_completion

end

def max_tokens
30
end

def model
[
"databricks/dbrx-instruct:nitro",
"cohere/command-r",

end
end

PROMPT = <<~END
Matching the original language of the question generate 3 alternate
keywords that might produce better results. Reply with just the list,
one per line.

END

def call(question)
transcript << { system: "You are a powerful web search engine" }
transcript << { user: question }
transcript << { assistant: "Searching... no results found." }
transcript << { user: PROMPT }
chat completion

end

Discrete Components

Individually separate and distinct Al-based building blocks

Predicate Pattern

Pose a specific question to the Al model and expect a definitive yes or no answer.

1. Formulate a specific question that can be answered with a yes or no
response.

2. Provide the Al model with the relevant context or information needed to
answer the question.

3. Prompt the Al model with the question and the provided context, expecting
a binary response (and optional rationale or explanation for the answer.)

4. Use the response to determine the appropriate course of action.

BEGIN TRANSCRIPT
%{text}
END TRANSCRIPT

The assistant is a personal AI that can help with a wide range of tasks
or simply converse with the user in a friendly manner like a companion.
The assistant has a long-term memory facility which it can invoke to
remember things that the user has told it in the past.

First analyze what the user is talking about, particularly the subjects
involved, which may include people, places, things, or concepts that are
personal to them and not in the public domain or your base knowlege.

Then answer the question:

Does the transcript contain enough context for the assistant to be able
to answer the user question without making assumptions about what they're
talking about?

Your response must begin with 'Yes, ' or 'No, ' followed by your
rationale. If you answer no, then the assistant will search its long-term
memory to gather more context, but that is an expensive operation and
should be avoided if possible.

API Facade Pattern

Sits alongside a more generalized Al assistant providing access to an APl via a
single plaintext request function.

1. Single request endpoint accepting plaintext or parameterized input.
Handles requests as looped chat completion with access to functions that
map to needed APl endpoints.

3. Returns aresponse that incorporates the results of the function calls.

SYSTEM DIRECTIVE = <<~END

The "user" conversing with you is another GPT helping its human user to
manage their Gmail account. Because your replies will be processed by
another AI, they do not need conversational commentary. Include full

message data (id, recipients, subject line, full body) in responses about
specific email messages.
END

m Books Bundles Courses

Search Leanpub

Patterns of Application Development

Patterns of
—+— Application

Development

Using Al

Obie Fernandez

Leanpub

This book is 97% complete

LAST UPDATED ON 2024-06-29

% Obie Fernandez

Using Al

$39.00 $69.00
MINIMUM PRICE SUGGESTED PRICE 9

YOU PAY

I $69.00 '

AUTHOR EARNS

I $55.20

YOU PAY IN US $

EU customers: Price excludes VAT.
$69.00 e

I is added durir

Add Ebook to Cart

Add to Wish List

Read Free Sample

Table Of Contents =

