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Retrieval Augmented 
Generation (RAG)
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Retrieval Augmented 
Generation (RAG)
• RAG = Retrieval-Augmented Generation
• Combines two components:

• Retriever: Pulls relevant documents from external knowledge 
source (e.g., vector DB)

• Generator: Uses LLM to generate answers based on retrieved 
context

• Benefits: factual grounding, domain-specific responses, better 
interpretability
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Why RAG is Powerful
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Why RAG is Powerful

Overcomes knowledge 
cutoff of LLMs

Customizes generation 
using your data

Safer and more up-to-
date than pure 

prompting
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Why Freshness Matters
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Why 
Freshness 
Matters

• Hallucinations from outdated 
data
• Missed updates lead to user 

mistrust
• Examples from real RAG failures 

(e.g., "company policy" answer is 
6 months outdated)

@drishtijjain



Traditional RAG Setup
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Traditional RAG Setup
• Components: Vector DB + Chunking + LLM
• Assumes static knowledge base
• Works well only initially
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RAG in the Real World
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RAG in the Real World

Internal documentation changes weekly

Wikis, Confluence, GitHub READMEs, product specs

Need continuous updates & quality assurance
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Our Goal

• RAG stack that updates without full 
re-index

• Tracks changes, freshness, and 
versioning

• Optimizes cost + quality tradeoffs
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Overview of RAG 
Architecture
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Overview of RAG Architecture

Source: https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/?utm_source=chatgpt.com @drishtijjain



Key Challenges

@drishtijjain



Key 
Challenges

Avoiding redundant re-indexing

Detecting meaningful content changes

Preventing silent embedding drift

Retraining at the right time

Prioritizing fresh answers
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Step 1 — Change 
Detection
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Change Detection

DETECTING IF A DOCUMENT 
HAS CHANGED SINCE LAST 

INDEXING

AVOID COSTLY RE-
EMBEDDING
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Technique — Checksum-
Based Detection 

• Compute hash per text 
chunk
• Compare with previous 

version
• Efficient and stateless
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Technique — 
Checksum-Based 
Detection 

• Download raw docs
• Chunk them
• Compute checksums
• Compare to previous 

version
• Only embed+index 

changed chunks
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Step 2 — Embedding 
Metadata and Versioning
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Step 2 — Embedding Metadata and 
Versioning

Track: Embedding model, 
timestamp, source

Avoid accidental mixing of 
incompatible embeddings
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Why Versioning 
Matters
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Why Versioning Matters

EMBEDDING MODEL 
UPGRADES SILENTLY ALTER 

VECTOR SPACE

RETRIEVAL ACCURACY 
DEGRADES
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Embedding 
Versioning
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Embedding Versioning & Drift Detection
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Step 3 — Semantic Change 
Detection
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Semantic Change 
Detection

• Sometimes content changes subtly
• Text looks different but meaning is 

same — or vice versa
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Technique 
— 

Semantic 
Diffing

• Use sentence transformers to 
compare old vs new chunk 
meaning
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Semantic Diffing & Metadata Tagging
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Apply semantic diffing on changed chunks, 
tag them:
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Step 5  
 Indexing with 

Intelligence
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Indexing with Intelligence

Only index meaningful changes Reduce cost on OpenAI, Cohere, 
HuggingFace APIs
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Architecture — Index 
Pipeline
Text > Chunker > Change Detector > Embedder > 
Vector DB
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Step 6 — Embedding 
Drift Detection
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Embedding Drift 
Detection

• Track cosine drift between old vs new 
embeddings

• Use alert thresholds

• Why Drift Matters
• If drift > 0.3, retrieval quality drops
• Re-ranking or retraining needed
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Drift Check
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Step 7 — Retraining 
Workflow
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Retraining Workflow

• Train new embedding model on KB
• Train reranker on Q&A pairs
• Maintain separate pipelines for:

• Embedding model retrain on updated 
KB

• Ranker training on user feedback + 
similarity data
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Pseudo-framework using MLflow
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Step 8  
Freshness-

Aware 
Retrieval
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Freshness-Aware Retrieval

Combine relevance 
with recency

Weighted scoring: LLM 
score + time decay
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Freshness-Aware Retrieval
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Monitoring & Metrics
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Monitoring & Metrics

Alert embedding drift Metrics dashboard: counts of 
updated chunks, retrain logs, 

freshness score

User feedback loop: implicit 
signals (clicks, selections) → 

train “reranker”
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Best Practices
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Best 
Practices

Hash per chunk

Semantic diff

Embed with version

Score by recency

Retrain as needed
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Mistakes to Avoid
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Mistakes to 
Avoid

Blindly re-indexing entire 
corpus

Ignoring embedding 
version

No metadata tagging
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THANK YOU!


