
Beyond the Vector DB:
Building a RAG Stack That

Actually Stays Fresh

Drishti Jain
@drishtijjain

About Me
o Software Developer / ML
o Published Technical Book
o Social Entrepreneur
o International Tech Speaker

o Career Coach – SkillUp with Drishti

@drishtijjain

Retrieval Augmented
Generation (RAG)

@drishtijjain

Retrieval Augmented
Generation (RAG)
• RAG = Retrieval-Augmented Generation
• Combines two components:

• Retriever: Pulls relevant documents from external knowledge
source (e.g., vector DB)

• Generator: Uses LLM to generate answers based on retrieved
context

• Benefits: factual grounding, domain-specific responses, better
interpretability

@drishtijjain

Why RAG is Powerful

@drishtijjain

Why RAG is Powerful

Overcomes knowledge
cutoff of LLMs

Customizes generation
using your data

Safer and more up-to-
date than pure

prompting

@drishtijjain

Why Freshness Matters

@drishtijjain

Why
Freshness
Matters

• Hallucinations from outdated
data
• Missed updates lead to user

mistrust
• Examples from real RAG failures

(e.g., "company policy" answer is
6 months outdated)

@drishtijjain

Traditional RAG Setup

@drishtijjain

Traditional RAG Setup
• Components: Vector DB + Chunking + LLM
• Assumes static knowledge base
• Works well only initially

@drishtijjain

RAG in the Real World

@drishtijjain

RAG in the Real World

Internal documentation changes weekly

Wikis, Confluence, GitHub READMEs, product specs

Need continuous updates & quality assurance

@drishtijjain

Our Goal

• RAG stack that updates without full
re-index

• Tracks changes, freshness, and
versioning

• Optimizes cost + quality tradeoffs

@drishtijjain

Overview of RAG
Architecture

@drishtijjain

Overview of RAG Architecture

Source: https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/?utm_source=chatgpt.com @drishtijjain

Key Challenges

@drishtijjain

Key
Challenges

Avoiding redundant re-indexing

Detecting meaningful content changes

Preventing silent embedding drift

Retraining at the right time

Prioritizing fresh answers

@drishtijjain

Step 1 — Change
Detection

@drishtijjain

Change Detection

DETECTING IF A DOCUMENT
HAS CHANGED SINCE LAST

INDEXING

AVOID COSTLY RE-
EMBEDDING

@drishtijjain

Technique — Checksum-
Based Detection 

• Compute hash per text
chunk
• Compare with previous

version
• Efficient and stateless

@drishtijjain

Technique —
Checksum-Based
Detection 

• Download raw docs
• Chunk them
• Compute checksums
• Compare to previous

version
• Only embed+index

changed chunks

@drishtijjain

Step 2 — Embedding
Metadata and Versioning

@drishtijjain

Step 2 — Embedding Metadata and
Versioning

Track: Embedding model,
timestamp, source

Avoid accidental mixing of
incompatible embeddings

@drishtijjain

Why Versioning
Matters

@drishtijjain

Why Versioning Matters

EMBEDDING MODEL
UPGRADES SILENTLY ALTER

VECTOR SPACE

RETRIEVAL ACCURACY
DEGRADES

@drishtijjain

Embedding
Versioning

@drishtijjain

Embedding Versioning & Drift Detection
@drishtijjain

Step 3 — Semantic Change
Detection

@drishtijjain

Semantic Change
Detection

• Sometimes content changes subtly
• Text looks different but meaning is

same — or vice versa

@drishtijjain

Technique
—

Semantic
Diffing

• Use sentence transformers to
compare old vs new chunk
meaning

@drishtijjain

Semantic Diffing & Metadata Tagging

@drishtijjain

Apply semantic diffing on changed chunks,
tag them:

@drishtijjain

Step 5  
 Indexing with

Intelligence

@drishtijjain

Indexing with Intelligence

Only index meaningful changes Reduce cost on OpenAI, Cohere,
HuggingFace APIs

@drishtijjain

Architecture — Index
Pipeline
Text > Chunker > Change Detector > Embedder >
Vector DB

@drishtijjain

Step 6 — Embedding
Drift Detection

@drishtijjain

Embedding Drift
Detection

• Track cosine drift between old vs new
embeddings

• Use alert thresholds

• Why Drift Matters
• If drift > 0.3, retrieval quality drops
• Re-ranking or retraining needed

@drishtijjain

Drift Check

@drishtijjain

Step 7 — Retraining
Workflow

@drishtijjain

Retraining Workflow

• Train new embedding model on KB
• Train reranker on Q&A pairs
• Maintain separate pipelines for:

• Embedding model retrain on updated
KB

• Ranker training on user feedback +
similarity data

@drishtijjain

Pseudo-framework using MLflow

@drishtijjain

Step 8
Freshness-

Aware
Retrieval

@drishtijjain

Freshness-Aware Retrieval

Combine relevance
with recency

Weighted scoring: LLM
score + time decay

@drishtijjain

Freshness-Aware Retrieval

@drishtijjain

Monitoring & Metrics

@drishtijjain

Monitoring & Metrics

Alert embedding drift Metrics dashboard: counts of
updated chunks, retrain logs,

freshness score

User feedback loop: implicit
signals (clicks, selections) →

train “reranker”

@drishtijjain

Best Practices

@drishtijjain

Best
Practices

Hash per chunk

Semantic diff

Embed with version

Score by recency

Retrain as needed

@drishtijjain

Mistakes to Avoid

@drishtijjain

Mistakes to
Avoid

Blindly re-indexing entire
corpus

Ignoring embedding
version

No metadata tagging

@drishtijjain

@drishtijjain
linkedin.com/in/jaindrishti/
medium.com/@drishtijjain
@geekyearthian

THANK YOU!

