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About Me

Software Developer / ML
Published Technical Book
Social Entrepreneur
International Tech Speaker
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o Career Coach — SkillUp with Drishti
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Retrieval Augmented
Generation (RAG)




Retrieval Augmented
Generation (RAG)

* RAG = Retrieval-Augmented Generation

* Combines two components:

* Retriever: Pulls relevant documents from external knowledge
source (e.g., vector DB)

* Generator: Uses LLM to generate answers based on retrieved
context

* Benefits: factual grounding, domain-specific responses, better
interpretability
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Why RAG is Powerful

Overcomes knowledge
cutoff of LLMs

Customizes generation
using your data

Safer and more up-to-
date than pure
prompting
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Why Freshness Matters
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* Hallucinations from outdated \
data
* Missed updates lead to user
Why mistrust
Freshness * Examples from real RAG failures
Matters (e.g., "company policy" answer is

6 months outdated)
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Traditional RAG Setup
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Traditional RAG Setup

» Components: Vector DB + Chunking + LLM
« Assumes static knowledge base
* Works well only initially
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RAG in the Real World

« .
= Internal documentation changes weekly

E Wikis, Confluence, GitHub READMEs, product specs

N

Need continuous updates & quality assurance
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Our Goal

* RAG stack that updates without full
re-index

* Tracks changes, freshness, and
versioning

* Optimizes cost + quality tradeoffs
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Overview of RAG
Architecture




Overview of RAG Architecture

Retrieval Augmented Generation (RAG) Sequence Diagram
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Key Challenge
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Avoiding redundant re-indexing

Detecting meaningful content changes

Key
Challenges

Preventing silent embedding drift

@ @ <

Retraining at the right time

%0

Prioritizing fresh answers
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Step 1 — Change
Detection
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Change Detection

=

DETECTING IF ADOCUMENT
HAS CHANGED SINCE LAST
INDEXING

AVOID COSTLY RE-
EMBEDDING
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Technique — Checksum-
Based Detection

- e * Compute hash per text
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Technique —
Checksum-Based
Detection

 Download raw docs
Chunk them
Compute checksums

« Compare to previous
version

Only embed+index
changed chunks

import hash
import os
import json

def chunk_te

return

def checksu
return

def detect
if os.

1ib

xt(text, chunk_size=1000):
[text[i:1+chunk_size] for 1 in range(0,

n(s: ry -> e
hashlib. (s. ('utf-8')).

changes(docs_dir, state_file='state.json'):
(state file):

prev = json. (open(state_file))

else:

prev = {}

curr =
changed
for fna

{}
=[]

me in 0S. (docs_dir):

text = n(os. . (docs_dir, fname)).

for

json.

return

changed = d

(F{1

chunk in chunk_text(text):
cs = checksum(chunk)
curr[cs] = {'file': fname, 'chunk': chunk}
if ¢s not in prev:
changed. ((cs, fname, chunk))
(curr, open(state_file, 'w'))
changed

etect_changes("docs/")
n(changed)} new/changed chunks detected")

(text), chunk_size)]

()

()
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Step 2 — Embedding
Metadata and Versioning
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Step 2 — Embedding Metadata and

Versioning

Track: Embedding model, Avoid accidental mixing of
timestamp, source incompatible embeddings

Qv @drishtijjain



Why Versioning

Matters
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Why Versioning Matters

EMBEDDING MODEL RETRIEVAL ACCURACY
UPGRADES SILENTLY ALTER DEGRADES
VECTOR SPACE

Qv @drishtijjain



Embedding
Versioning




EMBED_MODEL = "openai-embedding-2.3.0"

def embed_batch(chunks):

return [get_embedding(text) for text in chunks]

def index_new(changed):
for c¢cs, fname, chunk in changed:
emb = embed _batch([chunk])[0]
vector_db. (
Ld=cs,
vector=emb,
metadata={'file': fname, 'model ver': EMBED_MODEL, 'ts': time. ()}

Embedding Versioning & Drift Detection

Qv @drishtijjain



Step 3 — Semantic Change
Detection
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Semantic Change
Detection

* Sometimes content changes subtly

+ Text looks different but meaning is
same — or vice versa




Technique
* Use sentence transformers to

— compare old vs new chunk
Semantic R
Diffing




Semantic Diffing & Metadata Tagging

from sentence_transformers import SentenceTransformer, util

st = SentenceTransformer('paraphrase-MiniLM-L6-v2")

def semantically _diff(old, new, threshold=0.7):
emb old = st. (old, convert_to_tensor=True)
emb _new = st. (new, convert_to_tensor=True)
return util. (emb_old, emb_new). () < threshold
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Apply semantic diffing on changed chunks,
tag them:

for cs, fname, chunk in changed:
old chunk = load old chunk(cs)
if old_chunk and semantically_diff(old_chunk, chunk):

tags = ['major_update']
else:
tags = ['minor_update']
vector_db. (..., metadata={'tags': tags})

@, @drishtijjain



Step 5
Indexing with
Intelligence
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Indexing with Intelligence

&

Only index meaningful changes Reduce cost on OpenAl, Cohere,
HuggingFace APls

@’ @drishtijjain



Architecture — Index
Pipeline

Text > Chunker > Change Detector > Embedder >
Vector DB




Step 6 — Embedding
Drift Detection



Embedding Drift
Detection

* Track cosine drift between old vs new
embeddings

 Use alert thresholds

* Why Drift Matters
* If drift > 0.3, retrieval quality drops
* Re-ranking or retraining needed
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old embs = vector _db. (... filter by metadata.

dist = average_cosine_distance(old_embs, new_embs)
1f dist > 0.3:
alert("embedding drift detected")

Drift Check

@, @drishtijjain



Step 7 — Retraining
Workflow




Retraining Workflow

* Train new embedding model on KB
* Train reranker on Q&A pairs

* Maintain separate pipelines for:

* Embedding model retrain on updated
KB

* Ranker training on user feedback +
similarity data

Qv @drishtijjain



Pseudo-framework using MLflow

steps:
extract: docs/ - chunks
embed old = load embeddings()
train: fine-tune new embedder
evaluate: compute embedding drift
publish model if performance 1

generate training examples (query, relevant chunk)
train a lightweight cross-encoder reranker
version model & record metrics

@’ @drishtijjain



Step 8
Freshness-
Aware
Retrieval




Freshness-Aware Retrieval

V Combine relevance Weighted scoring: LLM
with recency score + time decay
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Freshness-Aware Retrieval

def fresh_retrieve(query, top_k=10, recency_lambda=0.5):
g_emb = get_embedding(query)
hits = vector_db. (g_emb, top_k=top_k*2)

scored = []

now = time. ()

for hit in hits:
age = now - hit['metadata']['ts']
recency_score = math. (-recency_lambda * age)
score = hit['score'] * (0.7 + 0.3 * recency_score)
scored. ((score, hit))

scored. (reverse=True, key=lambda x: x[0])

return [hit for _, hit in scored][:top_Kk]
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Monitoring & Metrics

Alert embedding drift Metrics dashboard: counts of User feedback loop: implicit
updated chunks, retrain logs, signals (clicks, selections) —
freshness score train “reranker”
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Best
Practices

Hash per chunk

Semantic diff

Embed with version

Score by recency

Retrain as needed
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Mistakes to

Avoid

No metadata tagging
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THANK YOU!
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