-

Can Al Build Your Next API Integration?

Lessons from Pandium's Experimentation with LLMs

Presented by Shon Urbas

{3‘ pandium

integrate all the things

Agenda

. What is Pandium

. Our Al Journey: The Early Days

. The Smallest Problem: JSON Key Path Mapping
. Building the Foundation

A Rekindling: Al in Production July, 2024

. The Revival: Q4 2024 Success

. Live Demo

. Key Lessons Learned

. The Future of Al in Integration Development

. Closing: The Real Al Revolution

OCOOO\IO)SJ'IhooI\)_\

—

Shon Urbas

linkedin.com/in/shon-urbas/

e CTO & Co-Founder of Pandium

e Former Platform Enginering Manager at
Handshake (Aquired by Shopify)

What is Pandium?

What is Pandium?

The Integration Challenge

Our typical engineer users face:

» Time sink: 60-80% of development time on integrations, not core
features

o Complexity creep: Each integration touches authentication, data
mapping, error handling, rate limiting

» Maintenance burden: APIs change, breaking existing integrations

What is Pandium?

Integration Code

Integration Scaffolding
Boilerplate and setup

Pandium's Solution

Platform

Our Al Journey: The Early Days

Our Al Journey: The Early Days

Phase 1: The "Whole Shabang" Approach (Birth of ChatGPT Era)

Late 2022: Ambitious but Naive
o Goal: Generate entire integrations from natural language prompts
e Reality: Models produced syntactically correct but functionally broken
code

Example: "Connect Salesforce to Slack” - 200 lines of code that didn't
actually work, forget about at scale

Our Al Journey: The Early Days

The Expert Partnership Experiment

Mid-2023: Bringing in the Consultants

e Partnered with Al consulting firms

e Promise: "We'll make this production-ready"

e Results:
o 3x longer timelines then quoted
o Couldn’t even approach doing the whole thing
o Drove us to think smaller so that's good, but even failed at that
o Key insight: Hype was ahead of practicality

Our Al Journey: The Early Days

The Pivot: From Sky-High to Surgical

Discovery: Most integration work doesn't need Al

* 90% can be handled deterministically
e 10% requires intelligent transformation
* Focus shift: Target the 90% that we can, and give the Al stuff more time.

The Smallest Problem:

JSON Key Path Mapping

The Smallest Problem: JSON Key Path Mapping

The "Aha!" Moment

Problem: Mapping arbitrary JSON structures

{

"customer_info": {
“full_name": "John Doe",
"contact": {"email": "john@example.com"}

"name": "John Doe",
"email_address": "john@example.com"

$.customer_info.full_name -> $.name
$.customer_info.contact.email -> $.email_address

Building the Foundation

Building the Foundation

What We Automated Deterministically
Q4 2024: Focus on the 90%

API Client Generation Project Scaffolding Documentation

e Auto-generated API
docs

e Standard project
structure

e Parse OpenAPI
specs

e Integration guides
e Specification

e Configuration
templates
e Testing frameworks

e Generate type-safe
SDKs

e Handle
authentication
patterns

A Rekindling: Al in Production July, 2024

A Rekindling: Al in Production July, 2024

Fresh off our JSON mapping struggles, | was convinced Al was all hype
e My brilliant idea: Submit talk proposal "Al Integration Hype vs Reality: Why It Doesn't
Work"
e Conference committee's response: © REJECTED ©

What | Learned:
» Peoples enthusiasm in exploring the space was infectious
e Not all the things shown were production ready, but that wasn'’t really the point
e Lots of clever design patterns.
e Early glimpses of what we'd later call "agentic programming"

Key insight: Reinforced the thought that by working on the deterministic parts first, we
could build a foundation for a successful Al model

The Revival: Q4 2024 Success

The Revival: Q4 2024 Success

What Changed?

Technology maturation:
e Much larger contexts, but still has constraints.
e “Context Engineering:” i.e. making sure only needed info is in prompt
e More reliable code generation

Our refined “Agentic” approach:
e Narrow Al scope to mapping functions only (a huge upgrade from just JSON PATHS)
e Robust testing and validation
e [terative failure handling

The Revival: Q4 2024 Success

Input

Testing & Validation

Any failures? Input Analysis

Does it compile? Does it run?
b4 =
[Y
Input Analysis
Failure Count Context Engineerin Analyze input &
All pass g S i Install relevant clients
<3 Always use new context decide methods needed
No, give up Yes, retry. |
| S
v T v
N
Success Accept Current State Code Generation
T
\. //" v
N\ / Code Generation
\
/
hY X
Handle edge cases
80% automation is Create transformation 8 Generate acceptable
with client READMEs
better than 100% manual functions 8 § output
‘Cursor rules

Testing & Validation

The Revival: Q4 2024 Success

The "Give Up Early" Principle

Key insight: Not everything needs to be perfect. i.e. We only try 3 times, for a
successful flow before moving on.

o Deterministic parts: Keep them deterministic
e Al parts: Allow controlled failure
e Success criteria: 90% automation is better than 100% manual

Example

f}- pandium

The “Prompt” for user:

Connector A: ActiveCampaign
Resource A: Sales

Connector B: MindBody
Resource B: Order

Generate Starter Integration

@ Include API Clients

@ Include CodeGen

Configure Flows:

Orders m]
ory L mj
]

Example: Method Defs

Example of a “Product”

g
"listProducts": {
"requestType' ProductsApilListProductsRequest",
"responseType Promise<AsyncGenerator<ShipbobProductsApiViewModelsPublicProductViewModel, any, unknown>>",
"supportingTypes": {
"ProductsApilistProductsRequest": "interface ProductsApilListProductsRequest { readonly referencelds?: Array<string>; readonly page?: number; readonly limit?: number; readonly iDs?: Array<number>; readonly search?: string; readonly
activeStatus?: ShipbobProductsCommonModelsProductActiveStatus; readonly bundleStatus?: ShipbobProductsCommonModelsProductBundleStatus; readonly shipbobChannelId?: number; }",
ShipbobProductsCommonMode lsProductActiveStatus const ShipbobProductsCommonModelsProductActiveStatus { readonly Any: \"Any\ readonly Active: \"Active readonly Inactive: \"Inactive\"; }\n\nexport type
ShipbobProductsCommonModelsProductActiveStatus = typeof ShipbobProductsCommonModelsProductActiveStatus[keyof typeof ShipbobProductsCommonModelsProductActiveStatus];",
"ShipbobProductsCommonModelsProductBundleStatus": "const ShipbobProductsCommonModelsProductBundleStatus { readonly Any: \"Any\"; readonly Bundle: \"Bundle\"; readonly NotBundle: \"NotBundle\"; }\n\nexport type
ShipbobProductsCommonModelsProductBundleStatus = typeof ShipbobProductsCommonModelsProductBundleStatus[keyof typeof ShipbobProductsCommonModelsProductBundleStatus];",

"ShipbobProductsApiViewModelsPublicProductViewModel' nterface ShipbobProductsApiViewModelsPublicProductViewModel { id?: number; reference_id?: string | null; bundle_root_information?:
ShipbobProductsApiViewModelsPublicBundleRootInformationViewModel; created_date?: string; channel?: ShipbobProductsApiViewModelsPublicChannelViewModel; sku?: string | null; name?: string | null; barcode?: string | null; gtin?: string | null; upc?: string
| null; unit_price?: number | null; total_fulfillable_quantity?: number; total_onhand_quantity?: number; total_committed_quantity?: number; fulfillable_inventory_items?: Array<ShipbobProductsApiViewModelsPublicInventoryItemViewModel> | null;
fulfillable_quantity_by_fulfillment_center?: Array<ShipbobProductsApiViewModelsPublicFulfillmentCenterQuantityViewModel> | null; }",

"ShipbobProductsApiViewModelsPublicBundleRootInformationViewModel" nterface ShipbobProductsApiViewModelsPublicBundleRootInformationViewModel { id?: number; name?: string | null; 5

"ShipbobProductsApiViewModelsPublicChannelViewModel' nterface ShipbobProductsApiViewModelsPublicChannelViewModel { id?: number; name?: string | null; }",

"ShipbobProductsApiViewModelsPublicFulfillmentCenterQuantityViewModel": "interface ShipbobProductsApiViewModelsPublicFulfillmentCenterQuantityViewModel { id?: number; name?: string | null; fulfillable_quantity?: number; onhand_quantity?:

number; committed_quantity?: number; }",
"ShipbobProductsApiViewModelsPublicInventoryItemViewModel": "interface ShipbobProductsApiViewModelsPublicInventoryItemViewModel { id?: number; name?: string | null; quantity?: number; }"

Example: All + Imports

import MindbodyClient, { SaleApiGetSalesRequest } from '@pandium/mindbody-client';
import ActivecampaignClient, {
DefaultApiCreateOrderRequest,
CreateOrderRequest,
CreateOrderRequestEcomOrder,
CreateOrderRequestEcomOrderOrderProducts
} from '@pandium/activecampaign-client';
import { Config } from '../lib.js';

Imports

All the Code Generated

Example: Mapper

const saleToOrder = (sale: any, connectionId: string, customerId: string): DefaultApiCreateOrderRequest | undefined => {
try {
const orderProducts: CreateOrderRequestEcomOrderOrderProducts[] = sale.Items?.map((item: any) => ({
name: item.Description || 'Unknown Product',
price: item.UnitPrice || 0,
quantit item.Quantity || 1,
externalid: item.Id?.toString() || ‘item-${Date.now()}",
description: item.Description || ''
sku: item.Id?.toString() || ''
bR IR S H

const ecomOrder: CreateOrderRequestEcomOrder = {

externalid: sale.Id?.toString() || ‘sale-${Date.now()}",

‘Mindbody',
: sale.ClientEmail || ',

orderProducts: orderProducts,

totalPrice: sale.TotalAmount || O,

taxAmount: sale.TaxAmount || O,

discountAmount: @, // Mindbody d n't provide discount directly

currency: sale.PaymentMethod?.Currency || 'USD',

connectionid: parseInt(connectionId),

customerid: parselInt(customerld),

orderNumber: sale.Id?.toString() || '',

externalCreatedDate: sale.SaleDateTime || new Date().toISOString()
};

const orderRequest: CreateOrderRequest = {
ecomOrder: ecomOrder
Y

return {
createOrderRequest: orderRequest
};
catch (error) {
console.error(*There was an error in transforming Mindbody sale ${sale.Id || 'unknown'} into Activecampaign order payload: ${error}’);
}

return undefined;

Example: The loop

port const syncMindbodySalestoActivecampaignOrders = async
mindbody: MindbodyClient,

activecampaign: ActivecampaignClient,

config: Config

= {

const connectionId = config.activecampaign_connection_id;
const customerId = config.activecampaign_customer_id;

if(!connectionId) {
console.error('Cannot sync Mindbody sales to Activecampaign orders: missing activecampaign_connection_id config');
console.error(’— STOPPING SYNC OF MINDBODY SALES ==

return;

if(!customerId) {
console.error('Cannot sync Mindbody sales to Activecampaign orders: missing activecampaign_customer_id config');
console.error(’—-— —— STOPPING SYNC OF MINDBODY SALES —-—- —);

return;

const request: SaleApiGetSalesRequest = {};
const salesGenerator = await mindbody.getSales(request);

for await (const sale of salesGenerator) {
const saleData = sale as any; // Type assertion to handle the 'neve type
const orderPayload = saleToOrder(saleData, connectionId, customerId
if (lorderPayload) continue;

try {
await activecampaign.createOrder(orderPayload);
console.error(Successfully created an Activecampaign order for Mindbody sale ${saleData.Id || 'unknown'}');
} catch (error) {
console.error(There was an error in creating Activecampaign order based on Mindbody sale ${saleData.Id || 'unknown'}: ${error}’)

console.error(
S — —— COMPLETED SYNCING MINDBODY SALES TO ACTIVECAMPAIGN ORDERS

Example: Result

99.999% deterministic code

User given (including API clients) ~200k of code to start integration

With 96 lines trully generated by LLM. Rest is all normal Code Gen

Key Lessons Learned

Key Lessons Learned

Technical Lessons

e Scope Limitation: Al excels at narrow, well-defined tasks
e Hybrid Approach: Combine Al with deterministic systems
» Validation is Critical: Al output must be thoroughly tested
e Failure Recovery: Build systems that handle Al mistakes gracefully

Key Lessons Learned

Business Lessons

e Solution-First Thinking: Find problems that fit Al capabilities

e Avoid "Al for Al's Sake": Value must be demonstrable

e Developer Experience: Al should enhance, not replace, developer control
e lterative Development: Start small, prove value, scale up

The Future of Al in Integration

Development

The Future of Al in Integration Development

What's Next for Pandium

Short-term (hext 3 months):
e Multiple Objects to Single Objects Flows
e Event Based
e CLI Access

Medium-term (3+ months):
e Forking and Build (i.e. | have a Xero Integration... now make a QBO one.)
o Al Assisted API Client generation
e Automated performance tuning

The Future of Al in Integration Development

Industry Predictions

What will happen:
o Al will augment, not replace, developers
e Hybrid human-Al workflows will become standard
e Domain-specific Al tools will outperform general-purpose ones (just like real life)

What won't happen:
e Complete automation of complex integrations
e Al replacing the need for technical expertise
e One-size-fits-all Al solutions

Closing: The Real Al Revolution

Closing: The Real Al Revolution

The Bottom Line
Al's true value in integration development:
e Not: Building entire systems from scratch

e But: Accelerating the tedious, repetitive work
e Result: Developers focus on business logic

Questions?

. . . “ - e
f} oondium .
integrate all the things PRODUCT
AND

PARTNERSHIPS

PODCAST

3 susscrise

Conversa tions about
integrations and ecosystems
with leaders from Canva,
Atlassian, TalkDesk, Bolt,
Cloudinary & more

Subscribe to the
podcast to hear
Shon Urbas

u conversations about
Linkedin.com/in/ integrations and

ecosystems

Thank You! Any Questions?

