
Patterns of Application 
Development Using AI

Introduction to a Practical Approach for Integrating
LLM-based AI Into Day to Day Programming

Obie Fernandez
AI in Production - Asheville, NC - July 19, 2024



Introduction

Generative AI and LLMs in particular are 

revolutionizing how I write software. I 

wrote a book about it.

Key Question: How to apply this approach 

without changing everything?

In this talk I will discuss one abstract 

pattern and at least a couple of concrete 

patterns depending on time constraints.



https://olympia.chat



The Abstract Patterns

Narrow The Path
Focusing the AI on the task at hand so it’s not 
distracted by its vast latent space

Retrieval Augmented Generation (RAG)
Retrieve relevant information then combine with 
prompt to provide richer context

Multitude of Workers
Decompose workflows into collaborating 
almost-human discrete components

Tool Use
Functions that an LLM can interact with during the 
generation process

Self Healing Data
Automatically detect, diagnose, and correct data 
anomalies, inconsistencies, or errors

Contextual Content Generation
Generate dynamic and context-specific content 
within your applications

Generative UI
Create highly personalized and dynamic user 
experiences on-the-fly

Intelligent Workflow Orchestration
Dynamically orchestrate and 
optimize complex workflows



The Concrete Patterns (28)

Prompt Engineering
Chain Of Thought

Role Assignment

Prompt Object

Prompt Template

Structured IO

Prompt Chaining

Prompt Rewriter

Response Fencing

Query Analyzer

Query Rewriter

Ventriloquist

Intelligent Error Handling
Contextual Error Diagnosis

Intelligent Error Reporting

Predictive Error Prevention

Smart Error Recovery

Personalized Error Communication

Adaptive Error Handling Workflow

Quality Control
Eval
Guardrail

Discrete Components
Predicate

API Facade

Result Interpreter

Virtual Machine

Human In The Loop
Escalation

Feedback Loop

Passive Information Radiation

Collaborative Decision Making

Continuous Learning



Multitude of Workers
Decompose workflows into collaborating almost-human 

discrete components



I like to think of my AI components as little, 
almost-human virtual “workers” that can be 

seamlessly integrated into my application logic to 
perform specific tasks or make complex decisions. 



Discrete AI Components

Distinct AI-powered building 
blocks that streamline the 
process of incorporating 
intelligent behaviors into your 
software

AI can help you declare parts of 
your biz logic in plain language.

Stepping stone to writing entire 
applications in prompt-driven 
style



Modularity is Key

Proponents of OO programming tell us to think 

about object interactions as messages.

AI workers “talk to each other” via plain language 

messages, like little humans interacting

Loosely-coupled approach that allows your 

application to adapt and evolve over time

Influenced by Microservices approach

Different than typical agents approach, these 

workers do stuff on behalf of your application, 

not the user

User 7482 
hasn’t 

logged in 
recently

Let me 
look at 
their 

activity 
history

Okay, I’ll send 
them an email 

about our latest 
new feature



Inspired by Behavior Driven Development (BDD)

BDD emphasizes collaboration among developers and non-technical 

stakeholders to understand a system’s expected behavior through clear examples 

written in an easily understandable language

Literally invented by many of my Rubyist colleagues at Thoughtworks including:

● Dan North

● Liz Keogh

● Aslak Hellesoy (Cucumber)

● Dave Astels



Example: Account Manager





Business Logic Revisions



Prompt Engineering
Patterns for optimizing prompts, improving AI 

performance, and achieving desired outcomes



Structured IO Pattern

Structured Input 
Helps the LLM better understand the 
task at hand and the specific data it 
needs to process

● Provide input data to the LLM in a 
structured standard format such as 
XML or JSON.

● Clearly delineate different parts of 
the prompt, such as instructions, 
examples, and data

Structured Output
Simplifies the parsing and integration 
of responses into your application’s 
workflow.

● Use specific tags or delimiters to 
mark different parts of the output, 
such as entity names, values, or 
categories

● Enables easy extraction of relevant 
information from the response







Ventriloquist Pattern

1. Plan the desired outcome for the AI’s responses

2. Create a set of hardcoded user-assistant exchanges that guide the AI 

towards the intended direction

3. Preload these exchanges into the conversation transcript before starting any 

completions

4. Initiate the chat completion process

5. Response continues where the hardcoded exchanges left off

Allows you to guide the AI’s responses by preloading hardcoded user-assistant 

exchanges into the conversation transcript before starting any completions.







Discrete Components
Individually separate and distinct AI-based building blocks



Predicate Pattern

Pose a specific question to the AI model and expect a definitive yes or no answer.

1. Formulate a specific question that can be answered with a yes or no 

response.

2. Provide the AI model with the relevant context or information needed to 

answer the question.

3. Prompt the AI model with the question and the provided context, expecting 

a binary response (and optional rationale or explanation for the answer.)

4. Use the response to determine the appropriate course of action.





Sits alongside a more generalized AI assistant providing access to an API via a 

single plaintext request function.

1. Single request endpoint accepting plaintext or parameterized input.

2. Handles requests as looped chat completion with access to functions that 

map to needed API endpoints.

3. Returns a response that incorporates the results of the function calls.

API Facade Pattern






