
PyTorch vs
JAX

Sujay Kumar

Deep Learning Frameworks
• High-level APIs for model construction, training procedures, data

processing and model exports
• Optimized n-dim matrix operations
• Automatic Differentiation
• Hardware Acceleration: GPU/TPU
• Support our favorite programming languages
• Tensorflow, PyTorch, JAX, Caffe, PaddlePaddle, MATLAB

What’s the right framework for me?
• Level of abstraction provided and extendability
• Performance and Efficiency
• Distributed Training: Large Models
• Rapid prototyping and experimentation
• Community and Developer Support

Pytorch vs JAX
Pytorch

• Open-source training framework
by Meta
• Dynamic computation graphs
• Focused on ease-of-use and rapid

prototyping
• Constructs the autograd graph

during runtime

JAX
• Open-source training framework

by Google
• Functional programming style
• Focused on high-performance

numerical computing
• Uses XLA compiler to compile the

execution graph beforehand
• JIT compilation

Abstraction: Neural Networks
Pytorch JAX

Abstraction: Numpy Ops
Pytorch JAX

Abstraction: Custom CUDA
Pytorch

• Supports writing custom
CUDA kernels through CUDA
programming model in C++
• Triton: Array-based

programming model for GPU
kernels in Python

JAX
• Supports writing custom

CUDA kernels through CUDA
programming model in C++
• Pallas: Triton-like that allows

writing GPU kernels for both
GPU and TPU

Abstraction: tl;dr
Pytorch

• Supports abstractions at all
levels
• Open-source libraries:
• TranformerEngine
• PyTorch Lightning
• Triton

JAX
• Supports abstractions at all

levels
• Open-source libraries
• TranformerEngine
• Flax, Haiku
• Optax
• Pallas

Performance and Efficiency
Pytorch

• Dynamic computational graphs
• Dynamic CUDA kernel

benchmarking
• Flexibility to change graphs during

iteration
• torch.compile()

• Fuse ops
• CUDAGraph
• Automatic Triton Kernel codegen

JAX
• JIT (Just-In-Time) compilation
• Changing graphs during

execution triggers recompilation
• Fuse ops
• CUDAGraphs
• Better memory management
• Low CPU overhead

Performance and Efficiency: tl;dr
Pytorch

• Using open-source training
frameworks: efficiency already
baked-in
• Building your own training

scripts: manually improve
efficiency

JAX
• Building your own training

scripts: provides pretty-good
out-of-the-box efficiency and
performance
• Need more tweaks? Need to

understand OpenXLA

Distributed Training: Large Models
Pytorch

• Model fits on a single GPU?
• DistributedDataParallel

• Model is in billions
• FullyShardedDataParallel

• Model is in trillions
• Tensor Parallel
• Pipeline Parallel
• Mixture-of-Experts

JAX
• Model fits on a single GPU?
• DeviceMesh

• Model is in billions
• DeviceMesh

• Model is in trillions
• DeviceMesh

Distributed Training: tl;dr
Pytorch

• Constrained in types of
parallelism
• Need to manually handle

sharding and parallelism

JAX
• Can shard the model and

data across GPUs/TPUs as
you see fit
• Provides most flexibility for

training large models
• All sharding, communication

and compute handled by
OpenXLA compiler

Rapid Prototyping/Experimentation
Pytorch

• Imperative
• Dynamic Graph Computation
• Can put breakpoint anywhere
• Comfortable with Python?

You’ll feel comfortable with
Pytorch

JAX
• Functional programming
• Immutability and Pure

Functions
• Hard to debug with

breakpoints
• Even though there’s a Python

frontend, is not compatible
with python programming
philosophy

Community and Developer Support
Pytorch

• Large open-source community
• Driven by Meta for GPU
• Supported by large

enterprises such as Nvidia,
Microsoft, OpenAI

JAX
• Nascent but growing open-

source community
• Driven by Google and mainly

focusing on TPUs
• Supported by Nvidia

Tl;dr
• Working with big models and require non-standard distributed

training techniques? Use JAX
• Would prefer functional programming to reduce bugs and get

improved performance? Use JAX
• Primary workloads running on TPUs? Use JAX
• Prefer flexibility and rapid prototypes? Use PyTorch
• Prefer experimenting with the latest research results from

academia and industry? Use PyTorch

